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SUMMARY

The Hippo pathway is a conserved signaling cas-
cade that modulates tissue growth. Although its
core elements are well defined, factors modulating
Hippo transcriptional outputs remain elusive. Here
we show that components of the steroid-responsive
ecdysone (Ec) pathway modulate Hippo transcrip-
tional effects in imaginal disc cells. The Ec receptor
coactivator Taiman (Tai) interacts with the Hippo
transcriptional coactivator Yorkie (Yki) and promotes
expression of canonical Yki-responsive genes. Tai
enhances Yki-driven growth, while Tai loss, or a
form of Tai unable to bind Yki, suppresses Yki-driven
tissue growth. This growth suppression is not corre-
lated with impaired induction of canonical Hippo-
responsive genes but with suppression of a distinct
pro-growth program of Yki-induced/Tai-dependent
genes, including the germline stem cell factors
nanos and piwi. These data reveal Hippo/Ec pathway
crosstalk in the form a Yki-Tai complex that collabo-
ratively induces germline genes as part of a tran-
scriptional program that is normally repressed in
developing somatic epithelia.

INTRODUCTION

Most metazoan organisms grow during embryogenesis and a

subsequent juvenile stage, which in vertebrates coincides with

hormone-driven sexual maturation. The extent of growth is

determined in part by extracellular signals in the form of locally

acting morphogens and systemic growth factors. In the fruit fly

Drosophila melanogaster, these local and systemic factors act

in concert with nutrient-sensing pathways to regulate growth of

pockets of diploid epithelial cells termed imaginal discs that

grow during embryonic and larval stages and are reshaped dur-

ing pupation into adult organs (Fristrom, 1970; Nijhout et al.,
168 Developmental Cell 34, 168–180, July 27, 2015 ª2015 Elsevier In
2014). The ecdysteroid 20-hydroxyecdysone (20E), the hydrox-

ylated metabolite of ecdysone (Ec), triggers pupal metamor-

phosis and accompanying histolysis of most larval tissues

(Riddiford, 1993) by binding a heterodimer of Ec receptor (EcR)

and Ultraspiracle (Usp), which are homologs of vertebrate nu-

clear hormone receptors (Koelle et al., 1991; Thomas et al.,

1993; Yao et al., 1992). The EcR-Usp heterodimer activates or

represses gene transcription depending on bound cofactors

(Hu et al., 2003; Tsai et al., 1999). 20E binding stimulates release

of EcR-associated repressors such as Smrter (Tsai et al., 1999)

and recruitment of coactivators that support expression of Ec-

response genes (Bayer et al., 1996; DiBello et al., 1991).

In addition to stimulating larval instars and pupal metamor-

phosis, EcR regulates growth of larval imaginal tissue via auton-

omous and non-cell autonomous mechanisms. EcR activity in

the larval fat body (FB) systemically suppresses growth by

lowering production of insulin-like peptides (dILPs) by neuroen-

docrine cells (Boulan et al., 2013; Delanoue et al., 2010). Ge-

netic reduction of EcR in the FB thus elevates insulin-like growth

factor (IGF) activity in the periphery, leading to increased growth

(Delanoue et al., 2010). In contrast, imaginal disc cells lacking

EcR or the Ecdysoneless protein (Ecd), which is cell autono-

mously required for production of low levels of Ec, proliferate

at reduced rates relative to normal cells (Brennan et al., 1998;

Delanoue et al., 2010; Gaziova et al., 2004; Henrich et al.,

1987). Ecdysteroids have been linked to expression of genes

involved in cell division and growth (Ghbeish and McKeown,

2002; Ghbeish et al., 2001; Mitchell et al., 2008; Nijhout and

Grunert, 2002). However, cell-autonomous mediators of EcR

proliferative effects and the degree to which the EcR pathway

engages in crosstalk with other proliferative pathways are not

well defined. A better understanding of this aspect of EcR

biology could illuminate mechanisms that modulate develop-

mental growth and are affected in diseases of altered nuclear

receptor signaling.

The transcriptional coactivator protein Taiman (Tai) binds EcR

and supports EcR-mediated effects in the ovary and border cells

(Bai et al., 2000; Jang et al., 2009; König et al., 2011). Tai is a ho-

molog of the vertebrate family of p160 nuclear receptor coactiva-

tors (NCOA1,2,3, also known as steroid receptor coactivator
c.
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[SRC]-1,2,3) and has highest sequence homology to NCOA3,

also termed amplified in breast cancer-1 (AIB-1) due to its over-

expression in breast cancers (reviewed in Yan et al., 2006). The

Tai protein contains N-terminal basic-helix-loop-helix (bHLH)

and PAS (Per-Arnt-Sim) domains, a centrally located receptor

interaction domain (RID) containing a pair of Leucine-x-x-

Leucine-Leucine (LxxLL) motifs that interact with EcR, and a

C-terminal glutamine-rich transcriptional activation domain

(TAD) (Bai et al., 2000). Tai has a well-defined role in invasive

behavior of border cells (Bai et al., 2000; Jang et al., 2009) and

a proposed pro-growth role in epithelial cells (Turkel et al.,

2013), but its normal role in disc development is less clear.

Here we define a role for Tai in autonomous control of imaginal

disc growth in a complex with Yorkie (Yki), the transcriptional co-

activator of the Hippo pathway (reviewed in Staley and Irvine,

2012). The ability of Tai to promote growth correlates with a

Tai-Yki complex mediated by a pair of PPxY (proline-proline-x-

tyrosine) motifs in the Tai TAD and two WW (tryptophan-trypto-

phan) domains in Yki. Tai enhances the effect of Yki on disc

growth, while a mutant form of Tai unable to bind Yki suppresses

Yki-driven growth. At a transcriptional level, Tai regulates ex-

pression of the canonical Yki-target genes expanded, diap-1,

e2f1, and bantam and can associate with a segment of the

bantam promoter that also interacts with EcR and Yki (modEn-

code Consortium et al., 2010; Oh and Irvine, 2011). EcR is

required for Tai-driven activation of expanded and diap-1, further

supporting the hypothesis that Tai and Yki co-regulate a tran-

scriptional program in disc cells. However, the Tai dependence

of Yki-driven overgrowth is not reflected by effects on canonical

Yki transcriptional targets but rather by failure to induce a distinct

group of Yki-inducible/Tai-dependent mRNAs identified by a

transcriptome-wide RNA analysis. Two of these mRNAs, nanos

and piwi, encode RNA binding proteins that are highly expressed

in the germline, where they support self-renewing division of

germline stem cells (GSCs) (reviewed in Losick et al., 2011;

Ross et al., 2014). Yki requires Tai to induce nanos and piwi in

disc cells, and individual depletion of either GSC factor partially

suppresses Yki-driven overgrowth. Collectively, these findings

identify Tai as a key regulator of Yki activity in vivo and provide

evidence that Tai-dependent induction of factors associated

with GSC renewal is one element of a transcriptional program

normally repressed by the Hippo pathway in developing somatic

epithelia.

RESULTS

Tai Supports Tissue Growth
In view of the role of Tai as an EcR coactivator, alleles of the

taiman (tai) gene were examined for effects on tissue growth.

Null tai alleles are lethal (Bai et al., 2000; König et al., 2011),

but two hypomorphic alleles (taik15101 and taik05809) in trans to

an uncovering genomic deficiency (ED678) yield adults that are

small and show an approximate 20% reduction in adult wing

size relative to controls (Figures 1A and 1B). Tai protein is de-

tected in third instar larval (L3) wing disc cells and manipulating

Tai levels in these cells with aUAS-tai transgene (Bai et al., 2000)

or a tai RNAi line (TRiP HM05182; hereafter referred to as taiIR )

(Figures S1A and S1B) produces growth effects restricted

to the site of expression (Figures 1C–1F). Expression of the
Deve
UAS-tai transgene with the engrailed-Gal4 (en-Gal4) posterior

(P) compartment driver (en>tai) expands the P domain of L3

wing discs, particularly in the pouch (Figure 1D). Reciprocal

depletion of Tai (en>taiIR) shrinks the P domain without signifi-

cantly altering the size of the Cubitus interruptus (Ci)-positive

anterior (A) domain (Figure 1E). Quantitation of relative A and P

domain sizes among en>tai and en>taiIR L3 discs confirms the

autonomous effect of Tai gain or loss (Figure 1F). Clonal analysis

using the Actin>CD2>Gal4 ‘‘Flp-out’’ technique (Pignoni and Zi-

pursky, 1997) confirms that Tai-expressing clones grow larger

than age-matched control clones (Figure 1G). The en>tai and

en>taiIR genotypes are each lethal in the pupal phase (data not

shown), precluding analysis of adult phenotypes. However, adult

animals expressing the taiIR transgene from the pouch driver

MS1096-Gal4 have significantly smaller wings than WT counter-

parts (Figures 1H and 1I). Morphologically, tai-expressing wing

tissue is excessively folded (Figures S1C and S1D) with evidence

of increased S-phase entry (Figure 1J). en>tai P cells also ex-

press elevated levels of the Broad Z3 protein (Figure S1E), which

is induced in cultured discs by 20E (Bayer et al., 1996). In sum,

these data are consistent with Tai inducing Ec-responsive genes

and proliferative genes in L3 wing cells.

Tai Interacts with Yki
Tai pro-growth activity could be based on its ability to interact

with proteins that act within established proliferative pathways.

Proteomic analyses in cultured cells identified the Hippo

pathway component and pro-growth transcriptional coactivator

Yki as a candidate Tai-interacting protein (A.V. and K.H.M., un-

published data; Kwon et al., 2013). A search for motifs within

Tai that could mediate Yki-binding revealed two PPxY (proline-

proline-x-tyrosine) motifs located within the C-terminal TAD

(P1432PAY and P1476PMY) (Figure 2A). Closely paired PPxY

motifs in other Hippo pathway components bind WW domains

present in Yki (Badouel et al., 2009; Gilbert et al., 2011; Oh

et al., 2009; Salah and Aqeilan, 2011). Co-immunoprecipitation

of tagged forms of Tai and Yki confirms that each protein readily

associates with the other in cultured Drosophila S2 cells (Fig-

ure 2B, lane 2, and Figure 2C, lane 5). Tyr-to-Ala (tyrosine-to-

alanine) mutations in key tyrosine residues within one or both

of the Yki WW domains (YkiY281A, YkiY350A, or YkiDWW2) block

interaction with Tai (Figure 2B). Yki is not co-precipitated with

versions of Tai carrying Tyr-to-Ala mutations in one or both of

the PPxY motifs (PPxA1, PPxA2, or both PPxA1,2) (Figure 2C).

Consistent with these S2 cell data, endogenous Tai co-purifies

with Yki-GFP expressed in 0- to 16-hr embryos (daGal4,UAS-

Yki-GFP), as indicated by the recovery of multiple Tai peptides

in mass spectrometry analysis, with the highest possible confi-

dence SAINT score of 1 (‘‘significance analysis of interactome’’;

Choi et al., 2011) (Figure S2A). In aggregate, these data indicate

that paired PPxY motifs in the Tai TAD can facilitate interaction

with the WW domains in Yki.

The presence of Yki and EcR-interaction motifs in the Tai

protein suggests that it might be capable of forming a physical

complex with both proteins. To assess whether an EcR-Tai-Yki

complex can be assembled in cells, epitope-tagged EcR was

expressed together with tagged forms of Tai and Yki in S2 cells.

Precipitation via the V5-tag on Yki can recover EcR, but only in

the presence of co-expressed Tai (Figure 2D, lane 1 versus
lopmental Cell 34, 168–180, July 27, 2015 ª2015 Elsevier Inc. 169



Figure 1. tai Supports Organism Growth

(A) Paired control (Df(2L)ED678/+) and tai mutant

(Df(2L)ED678/taik15101) adult females.

(B) Quantitation of adult female wing size among

the indicated genotypes (SEMs are shown; n = 12

for Df(2L)ED678/+ and Df(2L)ED678/taik05809,

n = 14 for Df(2L)ED678/taik15101; *p = 2.9e-2,

**p = 5.3e-6).

(C–E) L3 wing discs of the indicated genotypes

expressing GFP (green) and immunostained with

anti-Ci (blue) to mark the anterior (A, blue) and

posterior (P, green) domains. Unless otherwise

noted, the UAS-taiIR TRiP transgene HM05182 is

used in Tai-knockdown experiments.

(F) Relative A (dark gray) versus P (light gray) areas

among L3 wing discs of the genotypes shown in

(C)–(E) (SEMs are shown; n = 12 for en>+, n = 15

for en>tai, n = 10 for en>taiIR; p = 3.8e-2 and p =

4.4e-6, respectively, for en>tai and en>tai-IR

relative to en>+).

(G) Average 2D size of 48-hr Actin-Gal4 ‘‘Flp out’’

clones expressing GFP (light gray) or GFP and tai

(dark gray) (SEMs are shown; n = 79 for UAS-GFP,

n = 112 for UAS-GFP,tai; *p = 2.5e-2).

(H and I) Overlay and quantitation of wing size

among control adult female and Tai-depleted

females (taiIR) using the MS1096 driver (SEMs are

shown in I; n = 11 for MS1096>+ and n = 13 for

MS1096>taiIR; *p = 2.2e-12).

(J) Confocal image of an en>tai,GFP L3 wing disc

analyzed by BrdU incorporation (red) shows

elevated S-phase entry in the P domain (green).
lane 4), indicating that Tai is required to detect an Yki-EcR com-

plex. Thus, Tai is capable of bridging an interaction between

these transcriptional regulators in cells.
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A Form of Tai that Cannot Bind Yki
Antagonizes Yki-Stimulated
Growth
The physical interaction between Tai and

Yki points to potential cooperativity be-

tween the two proteins. Tai transgenes

were expressed alone or in combination

with a transgene encoding a hyperactive

form of Yki using a GMR-Gal4 driver

(GMR>ykiS168A) active in the larval and

pupal eye (Hay et al., 1997). Expression

of WT Tai (taiwt) with GMR-Gal4 moder-

ately expands adult eye size and en-

hances eye overgrowth in GMR>ykiS168A

adults (Figures 3A, 3B, S2B, and S2D

versus Figures S2C and S2E). Tai deple-

tion with the taiIR transgene leads to low

adult survival in the GMR>ykiS168A back-

ground (data not shown), but shrinks

adult head and eye size in both WT

and GMR>ykiS168A backgrounds (Figures

3C, S2H, and S2I). ey-FLP-mediated

production of clones homozygous for

the null allele tai61G1 (Bai et al., 2000)

in the GMR>ykiS168A background also
reduced adult head and eye size (Figure S2K). Suppression of

GMR>ykiS168A by tai alleles is not as complete as that provided

by depletion of Yki-interacting transcription factor Scalloped



Figure 2. Tai Interacts Physically with Yki and EcR

(A) Tai domain structure. Approximate locations of the two PPxY motifs and

their Y-to-A mutant forms are indicated.

(B) Co-immunoprecipitation (coIP) analysis of S2 cell lysates expressing SBP-

tagged Tai and V5-taggedWTYki or mutant forms of Yki with Y-to-Amutations

in either (Y281 or Y350) or both (DWW2) WW domains.

(C) CoIP analysis of S2 cell lysates expressing V5-Yki with SBP-taggedWT Tai

or withmutant forms of Tai with Y-to-Amutations in either (PPxY1A or PPxY2A)

or both (PPxY1,2A) PPxY motifs.

(D) Immunoprecipitation of EcR with Yki from S2 cell lysates expressing SBP-

Tai, V5-Yki, and EcR. Note the failure to recover EcR from anti-V5-Yki pre-

cipitates when Tai is not co-expressed (lane 4).
(Sd) (Figure S2J), implying that Tai enhances rather than medi-

ates Yki transcriptional activity in vivo. Consistent with this hy-

pothesis, a sdIR transgene strongly suppresses the combined
Deve
oncogenic effect of co-expressing Yki and Tai in the developing

eye (Figure S3A).

The location of the PPxY sites in the Tai TAD implies that a

physical interaction with Yki may be part of the mechanism by

which Tai affects transcription of genes involved in imaginal

disc development. GMR-Gal4 directed expression of a UAS-

taiPPxA1,2 transgene (Ala substitutions at Tyr1435 and Tyr1479),

which is expressed to equivalent levels as the UAS-taiWT trans-

gene in larval wing disc cells (Figure S3B), shrinks the size of

adult eyes (Figures S2B and S2F), and suppresses overgrowth

of GMR>ykiS168A adult eyes (Figures 3D and S2G). Larval

GMR>ykiS168A eye discs show precocious entry into the synthe-

sis (S) phase of the cell division cycle and enlargement of the

sheet of epithelial tissue posterior to the MF (see bracketed

areas in Figures 3E–3H). Relative to GMR-ykiS168A alone, co-

expression of ykiS168A with taiWT causes large folds of excess

tissue and enhanced S-phase entry among cells behind the

MF (Figures 3F and 3G). GMR>ykiS168A+tai discs also show

greater spacing between adjacent F-actin enriched apical

tufts of photoreceptor clusters behind the MF relative to

GMR>ykiS168A (Figures 3J and 3K). This combined effect of WT

Tai and Yki on cell division and photoreceptor spacing is

reversed when Yki is co-expressed with TaiPPxA1,2. The pattern

of S-phase entry in GMR>ykiS168A+taiPPxA1,2 discs resembles

that inGMR-Gal4 control discs, and the distance between apical

photoreceptor tufts in GMR>ykiS168A+taiPPxA eye discs is nearer

toWT dimensions (Figures 3H and 3L). Thus, the ability of Tai and

Yki to cooperatively induce tissue growth is based on a

PPxY:WW module through which these proteins can interact,

and amino acid substitutions in Tai that prevent Yki-binding

convert Tai into antigrowth factor that acts in a dominant-nega-

tive fashion to block Yki-driven tissue growth.

Endogenous Tai Supports Yki-Driven Tissue Growth
To assess whether tai contributes to growth of disc cells with

inactive Hippo signaling, null alleles of tai and the Yki-inhibitor

expanded (ex) were used in conjunction with tissue-specific Flp

transgenes to generate disc cells lacking one or both genes (Fig-

ures 3M–3S). Consistent with the systemic effect of tai alleles on

wing and body size (Figure 1), tai mosaic adult wings generated

with the Ultrabithorax (Ubx)-Flp transgene are reduced in size

relative to control organs, while ex mosaic wings are enlarged

due to Yki hyperactivity (Hamaratoglu et al., 2006). Loss of

Tai partially suppresses the ex phenotype such that ex,tai

mosaic wings are smaller than ex mosaic wings (Figures 3M

and 3N). ex,tai clones in L3 discs also appear smaller than

age-matched ex clones (Figures 3O and 3P), and direct analysis

of clone:twinspot ratios confirms that tai loss can suppress

excess growth of ex mutant larval disc cells (Figures 3Q–3S).

tai loss does not correct the characteristic broadened shape of

ex mosaic wings, indicative of a Tai-independent mechanism

supporting this aspect of the ex mutant wing phenotype. tai

loss also shrinks adult head and eye size and suppresses head

and eye overgrowth produced by clones of ex mutant cells,

although the strength of the suppressive effect of tai on ex phe-

notypes is less than that observed in wings (Figures S4A–S4E).

Genetic interactions are also observed between tai alleles and

the Hippo component Crumbs, an apical membrane protein

that couples apicobasal polarity cues to nuclear Yki activity
lopmental Cell 34, 168–180, July 27, 2015 ª2015 Elsevier Inc. 171



Figure 3. Yki Requires Its Interactor Tai to Drive

Tissue Hyperplasia

(A–D) Adult female heads expressing ykiS168A, ykiS168A+taiWT,

ykiS168A+taiIR, or ykiS168A+taiPPxA1,2.

(E–H) Paired top-bottom panels of third instar eye discs of

the indicated genotypes stained with FITC-phalloidin

(green) to visualize F-actin and anti-BrdU (red) to visualize S

phases. Bracket in each lower panel denotes post-mitotic

region posterior to the MF. Note the enhancing effect of co-

expressed Tai on YkiS168A-driven ectopic S-phase entry

behind the MF (F) versus (G) and the opposite suppressive

effect of TaiPPxA1,2 (F) versus (H).

(I–L) Magnified views of FITC-phalloidin staining posterior to

the MF in the same genotypes as in (E)–(H) showing

opposing effects of Tai and TaiPPxA1,2 on spacing between

the F-actin-enriched apical tufts of adjacent YkiS168A

photoreceptor clusters.

(M and N) Overlay and quantitation of Ubx>Flp adult wings

mosaic for a control chromosome (FRT40A; n = 6; set as 1.0)

versus a tai null (tai61G1; n = 11) or an ex allele (exe1; n = 7)

versus double mutant for ex and tai (exe1,tai61G1;n = 6). SDs

are shown in (N) (*p = 3.0e-5, **p = 1.0e-5).

(O and P) L3 wing discs containing heat shock-FLP induced

clones of exe1 (O) or exe1,tai61G1 (P) homozygous cells

(lacking GFP) and control twinspots (strong GFP signal).

(Q–S) Quantitation of individual exe1 and exe1,tai61G1

clone:twinspot size ratios plotted in (R) and (S) relative to a

hypothetical linear 1:1 ratio (black line). SEMs are shown in

(Q) (n = 18 for both genotypes, *p = 2.36e-11).

172 Developmental Cell 34, 168–180, July 27, 2015 ª2015 Elsevier Inc.



Figure 4. TaiModulates Expression of Clas-

sical Yki-Responsive Genes

(A–H) 3rd instar wing discs stained with anti-Ci and

processed to detect b-galactosidase (lacZ) or GFP

expression from the Yki activity reporters (A and B)

th-lacZ, (C and D) diap4.3-GFP, (E and F) ex-lacZ,

and (G and H) ban sensor-GFP in the background

of engrailed-Gal4 alone (A, C, E, and G) or in

combination with UAS-tai (B, D, F, and H).

(I–K) Activity of the indicated Yki-activity reporters

in L3 wing disc with depleted Tai in the P-domain

(en>taiIR).

(L) Anti-b-gal staining (red) to detect th-lacZ

expression in L3 eye discs carrying clones of

tai61G1mutant cells marked by the absence of GFP

(green).

(M–T) Anti-b-gal (lacZ) staining to detect expres-

sion of the ex-lacZ or th-lacZ enhancer trap lines in

L3 wing discs expressing tai (N and P), an EcR.A

RNAi transgene (EcRIR) (Q and S), or both trans-

genes together (tai,EcRIR) (R and T).

(U–W) Expression of th-lacZ, ex-lacZ, and the

ban-sensor in L3 wing discs with enGal4-driven

expression of a smrter RNAi transgene (smrIR) in

the P domain.

(X) Anti-b-gal staining to detect th-lacZ expression

in an L3 wing disc expressing the EcR.A-F645A

dominant-negative allele from the enGal4 driver.

A:P is left to right in all images.
(Chen et al., 2010; Ling et al., 2010; Robinson et al., 2010).

Expression of a version of Crumbs containing only the trans-

membrane and cytoplasmic domains (Crbintra) in the developing

wing induces an adult blistering effect related to its role in apico-

basal polarity and a separable enlarged-wing phenotype that is

suppressed by heterozygosity for yki (Robinson et al., 2010). A
Developmental Cell 34, 168–
tai null allele and two tai hypomorphs

(tai61G1, taik15101, and tai01351) also domi-

nantly suppress the enlarged size of

Crbintra (en>crbintra) wings (Figures S4F–

S4I). Although tai dosage could theo-

retically also affect Crbintra-induced

blistering, the common sensitivity of

Crbintra-expressing cells to yki and tai

gene dosage is consistent with Tai

interacting with Yki and co-regulating a

pro-growth transcriptional program in

developing wing and eye tissue.

Tai Requires EcR to Activate ex and
thread Transcription
In view of the physical and functional in-

teractions between Tai and Yki, tai alleles

were tested for effects on expression of

canonical Yki-target genes in imaginal

disc cells. Depletion of Tai with en>taiIR

lowers expression of the expanded (ex-

lacZ), thread/Diap1 (th-lacZ and diap4.3-

GFP), and e2f1 (e2f1-lacZ) transcriptional

reporters in theP compartment of L3wing

discs (Figures 4I–4K and S5A). A second
tai RNAi transgene (TRiP HMS00673) with a distinct shRNA

targeting sequence also reduces expression of the ex-lacZ and

th-lacZ reporters, although more weakly (Figures S5D and

S5E). Homozygosity for the tai61G1 null allele reduces expression

of th-lacZ and e2f1-lacZ in the L3 eye disc posterior to the

morphogenetic furrow (MF) (Figures 4L and S5C). Reciprocally,
180, July 27, 2015 ª2015 Elsevier Inc. 173



ex and th reporters show elevated expression in the P compart-

ment of en>tai wing discs (Figures 4A–4F and S5B). A transgene

encoding a version of Tai lacking the N-terminal bHLH domain

(Jang et al., 2009) retains the ability to activate ex-lacZ in disc

cells (Figures S5F and S5G), indicating an interaction with the

BTB-domain protein Abrupt is not required for Tai to induce ex.

These Tai-expressing clones project slightly away from the sur-

face of the epithelium (data not shown), and sections across their

base thus appear as ‘‘rings’’ of Yki hyperactivity (e.g., compare

the two clones highlighted by arrows in Figure S5G). Tai overex-

pression also induces activity of the pro-growth miRNA bantam

(ban) as detected by reduced expression of a GFP-ban sensor

(Figures 4G and 4H), which contains ban complementary sites

in the 30UTR of a GFP mRNA (Brennecke et al., 2003).

Chromatin immunoprecipitation (ChIP) studies by the mod-

ENCODE Project have identified EcR-association peaks within

the D. melanogaster genome in close proximity to the Yki-

induced genes ex, thread, ban, and e2f1 (modEncode Con-

sortium et al., 2010). Within the ban promoter, one of these

EcR-association peaks overlaps binding sites for Yki:Mad

heterodimers (Oh and Irvine, 2011). ChIP analysis of an induc-

ible, tagged form of Tai detects significant enrichment for this

segment of the ban promoter (ban-C12) (nomenclature accord-

ing to Oh and Irvine, 2011) in induced cells versus untreated

cells (Cu versus NT; Figures S5J and S5K). Control primer

sets corresponding to two randomly selected areas of the ban

promoter (ban-upstream1, ban-upstream2) show little to no

enrichment, as does a ban promoter region that interacts with

Yki but lacks a coincident EcR-association peak (banA) (mod-

Encode Consortium et al., 2010; Oh and Irvine, 2011). Although

the degree of Tai association with the ban-C12 region is rela-

tively moderate, it is nonetheless equivalent to the degree of

association of the Tai cofactor with the EcR-binding site in the

Broad promoter (EcB in Figures S5J and S5K) (Bernardo

et al., 2014), suggesting similar levels of Tai occupancy on

each EcR-interaction site.

Tai influences gene expression via its cognate transcription

factor EcR in germline cells and oocyte border cells (Bai et al.,

2000; König et al., 2011). To test the requirement for EcR in

Tai-driven induction of Yki-responsive genes, an EcR RNAi

transgene directed at all three EcR isoforms (EcRIR) was used

to deplete EcR from wing disc cells. EcR depletion alone had

minimal effect on the ex-lacZ and th-lacZ reporters in L3 wing

discs, but eliminated their induction by co-expressed Tai (Fig-

ures 4M–4T). RNAi depletion of the EcR-associated transcrip-

tional repressor Smrter (Smr) (Tsai et al., 1999) strongly induces

expression of ex-lacZ, th-lacZ, and suppresses expression of the

GFP-ban sensor in the larval wing disc (Figures 4U–4W), but has

no obvious effect on the unrelated reporter transgene Serrate-

lacZ (Figures S5H and S5I). The opposing effects of tai and

smr alleles suggest that EcR contributes to both repression

and activation of Yki-regulated genes in L3 wing cells. Con-

sistent with this hypothesis, the EcR.A-F645A dominant-nega-

tive allele, which is deficient in EcR-mediated gene activation

but not repression (Cherbas et al., 2003), moderately lowers

th-lacZ expression among P-domain cells (Figure 4X). These ef-

fects of EcR and smr alleles on Yki-activity reporters are consis-

tent with a role for Tai in modulating Hippo-regulated gene

expression in L3 disc cells.
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Tai Is Dispensable for Yki Induction of Classic
Hippo-Regulated Genes
One explanation for the role of Tai in Yki-driven organ overgrowth

is that the Yki:Tai interaction is required for Yki to efficiently stim-

ulate transcription of its established target genes. To test this

hypothesis, the effects of taidepletionwere assayed on transcrip-

tional reporters for the classic Hippo target genes ex and ban.

Although Tai can affect ex expression in otherwise WT disc cells

(see Figure 4), RNAi depletion of Tai does not prevent transgenic

Yki from activating the ex-lacZ transcriptional reporter in most of

the L3 wing disc, despite suppressing P-domain overgrowth (Fig-

ures 5A–5C). Cells along the dorsoventral boundary of the pouch

appear to be an exception to this rule, as ex-lacZ expression in

en>yki,taiIR discs is mildly reduced in this region (arrows, Fig-

ure 5C). In a reciprocal test, depletion of Yki effectively blocks

ex-lacZ induction by Tai throughout a majority of the L3 wing

disc (Figures 5D–5G), indicating that Yki inputs on ex expression

are dominant over those from Tai. To test the epistatic relation-

ship between Yki and Tai in control of a ban transcriptional re-

porter, expression of the ban2.5-lacZ reporter was analyzed in

clones of ex, tai, or compoundmutant ex,tai cells in L3wing discs.

Similar to the ex-lacZ reporter, Yki-dependent activation of the

ban2.5-lacZ reporter in ex mutant cells is not appreciably sup-

pressed by concurrent loss of tai (Figures 5H–5J).

To further test whether suppression of Yki phenotypes by the

taiIR and taiPPxA1,2 transgenes can be uncoupled from expression

of canonical Yki targets, qPCR analysis of the ex and cyclin E

(cycE) mRNAs was carried out from RNAs harvested from L3

wing discs expressing either Yki alone, Yki with Tai co-depleted,

or Yki with the TaiPPxA1,2 dominant-negative allele (Figures 6A

and 6B). Removal of Tai did not significantly suppress Yki in-

duction of either of these classic Hippo target mRNAs. Co-

expression of TaiPPxA1,2 also had no effect on ex and cycE

mRNA induction despite suppressing Yki-driven P-compart-

ment overgrowth. These data indicate that Yki induces the ex

and cycE mRNAs independent of its interaction with Tai.

nanos and piwiAre Induced byHyperactive Yki and Tai in
Wing Discs
The uncoupling of a role for Tai in Yki-driven growth from its role

in induction of classic Hippo target genes implies that Tai sup-

ports an as yet undefined portion of a transcriptional program

induced by hyperactive Yki in disc cells. To identify Yki-

induced/Tai-dependent genes, RNAs harvested from L3 wing

discs expressing either Yki (en>yki), or Yki in combination with

Tai-depletion (en>yki+taiIR) were analyzed by high-throughput

sequencing. This analysis generatedmapped reads correspond-

ing to more than 12 3 103 transcripts (Figure 6C; Table S1). A

subset of these wing disc mRNAswas designated as ‘‘candidate

Yki-induced mRNAs’’ based on a greater than 2-fold increase

(log2D > 0.8) in read frequency in experimental (en>yki) versus

control (en>) samples (Table S2); this group includes the estab-

lished Yki targets ex and kibra (Genevet et al., 2010; Hamaratoglu

et al., 2006). A subset of candidate Yki-induced mRNAs is

reduced in abundance (log2D < �0.8) upon co-depletion of

Tai (Table S3). This group includes factors with diverse predicted

functions, including a set of RNA regulatory factors expressed in

the germline (e.g., nanos, piwi, blanks, CG17018, Argonaute-3,

sister of Yb, qin, and krimper) (Chintapalli et al., 2007), but lacks
c.



Figure 5. Tai Is Not Required for Induction of ex or ban by Yki Hyper-

activity

(A–F) L3 wing discs stained with anti-b-gal to detect expression of the ex-lacZ

enhancer trap in the indicated genetic backgrounds. Arrows in (C) denote

reduced ex-lacZ expression along the dorsal-ventral boundary.

(G) Corresponding quantitative analysis of the posterior compartment ratio

(P area/total area) among L3 wing discs in (A)–(F) (SDs are shown; n = 10

for en>+ and en>tai, n = 4 for en>ykiIR, n = 11 for en>tai,ykiIR, n = 9 for en>yki,

n = 12 for en>taiIR, n = 8 for en>yki,taiIR� *, **see Statistics in Supplemental

Experimental Procedures; ns = not significant).

(H–J) Anti-b-gal staining (red) to detect ban2.5-lacZ expression in tai61G1

mutant (H), exe1 mutant (I), or tai61G1,exe1 double-mutant (J) clones in the L3

wing pouch marked by the absence of GFP (green).

Deve
ex and kibra, consistent with a lack of a requirement for Tai in-

duction of classic Hippo-responsive genes.

Direct analysis of select candidate Yki-induced mRNAs by

qPCR confirmed that depletion of Tai in Yki-overexpressing L3

wing disc cells blocks induction of the RNA regulatory factors

nanos and piwi, the Ec-induced gene Eig71Ee, and the secreted

insulin-like peptide dILP-8 (Figure 6D). A second, weaker taiIR

transgene (HMS00673) also partially suppressed Yki-induction

of nanos, dILP-8, and Eig71Ee but did not alter induction of

piwi, perhaps indicative of a lower threshold of Tai required for

Yki to activate piwi transcription (Figure S6A). Importantly, co-

expression of Tai enhances Yki-driven induction of the nanos

and piwi mRNAs, while TaiPPxA1,2 blocks induction of nanos

and dILP-8 and shows reduced ability to enhance piwi expres-

sion. Tai thus requires its PPxY motifs, which can bind to Yki,

to support Yki-driven induction of these mRNAs. RNAi depletion

also supports a selective role for EcR isoforms in the Tai-depen-

dent segment of the Yki-induced transcriptome in L3 wing disc

cells (Figure S6B). Transgenes targeting all three EcR isoforms

(EcRIR), the EcR.A isoform (EcR.AIR), or the EcR.B1 isoform

(EcR.B1IR) do not affect Yki-induction of the ex or cycE mRNAs,

but can individually suppress induction of nanos and piwi. Induc-

tion of dILP-8 was effectively inhibited only by pan depletion of

EcR, whereas individual depletion of EcR.A or EcR.B1 inhibited

induction of Eig71Ee, suggesting that the remaining EcR iso-

form, EcR.B2, may contribute to activation of dILP-8 and repres-

sion of Eig71Ee. In sum, the lack of an effect of taiPPxA1,2 or taiIR

on Yki-induction of the classic Hippo targets ex and cycE (Fig-

ure 6B versus Figure 6D) contrasts with the requirements for

Tai, and apparently EcR as well, in Yki-mediated control of the

nanos, piwi, dILP-8, and Eig71Ee mRNAs in L3 wing disc cells.

The nanos, piwi, and dILP-8 mRNAs all share a pattern of

highly enriched expression in the germline (Chintapalli et al.,

2007). The nanos and piwi gene products act cell autonomously

to support self-renewing divisions of GSCs (Cox et al., 1998; For-

bes and Lehmann, 1998; Kobayashi et al., 1996; Lin and Spra-

dling, 1997), and in the case of piwi, ectopic expression is

sufficient to increase somatic cell division (Cox et al., 2000).

nanos and piwi expression were analyzed in L3 wing discs using

an anti-Nanos antibody (Asaoka-Taguchi et al., 1999) and a lacZ

enhancer trap inserted into the piwi locus (piwi1 or piwi-lacZ) (Lin

and Spradling, 1997). Nanos protein is expressed at very low

levels in lysates of control discs but induced in Yki-expressing

discs in a Tai-dependent manner similar to its mRNA (Figure 7A).

Expression of piwi-lacZ is also induced in P-domain wing disc

cells that express the yki transgene (Figures 7B–7E). This induc-

tion of piwi-lacZ by transgenic Yki is blocked in cells also

depleted of Tai (Figure S6C), and this correlates with a reduced

degree of tissue expansion and folding in the areas of the dorsal

and ventral wing hinge. Significantly, activating endogenous Yki

by RNAi depletion of the Wts kinase (wtsKK101055) leads to mild

disc growth, consistent with a partial loss of Wts, and also ele-

vates piwi-lacZ expression (Figure 7F). Induction of piwi-lacZ

by Yki expression or Wts loss is most robust in the dorsal and

ventral regions of the wing hinge, suggesting that cells in these

areas activate a GSC-like program most strongly. Individual

depletion of Nanos or Piwi, with either a nanosIR line (IR-1) that

efficiently reduces Nanos protein levels in en>yki discs (Fig-

ure S7A) or two piwiIR lines (IR-1 and IR-2), suppresses the
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Figure 6. Identification of Yki-Induced, Tai-Dependent RNAs in Larval Wing Discs

(A) Late L3 enGal4,UAS-GFP wing discs from control (wt) animals or those expressing the indicated transgenes stained with phalloidin-AlexaFluor-594 (gray) to

visualize F-actin (images to scale).

(B) Quantitative real-time PCR (qPCR) analysis of expanded and cyclin EmRNA levels in late L3 wing discs carrying the indicated transgenes in combination with

enGal4.

(C) Color-coded heat map illustrating changes in abundance of individual RNAs between control versus Yki-expressing (Yki:Ctrl), and Yki-expressing versus

Yki-expressing/Tai-depleted (Yki:Yki+TaiIR) late L3 wing discs (see Tables S1, S2, and S3). The Yki:Ctrl heatmap contains 9,303 RNAs, of which 555 are

induced >0.8(log2)-fold. Of these, 160 RNAs (bracketed) are suppressed by >0.8(log2) upon Tai depletion.

(D) qPCR analysis of AGO3, Eig71Ee, nanos, piwi, and dILP-8 mRNAs in wing discs of the indicated transgenes in combination with enGal4. For all qPCR data,

SEMs are shown (n = 3; *p values see Statistics in Supplemental Experimental Procedures; ns = not significant).
growth of en>yki L3 wing discs and GMR-ykiS168A transgenic

adult eyes with little effect on corresponding WT organs (Figures

7G–7I; see also Figure S6C). Moreover, combining a nanosl7

hypomorphic allele and a deficiency covering the nanos locus

(Df(3L)Exel6183) also partially suppresses en>yki L3 wing disc

overgrowth (Figure S7B). These requirements for Nanos and

Piwi for Yki-driven growth supports a model in which these

GSC factors are ectopically induced by a hyperactive Yki-Tai

complex as one element of a transcriptional program that is nor-

mally repressed by the Hippo pathway in developing somatic

epithelia.

DISCUSSION

Studies of the Drosophila Hippo pathway have uncovered an

array of cytoplasmic regulators and nuclear factors that modu-

late expression of a fairly small set of transcriptional targets. Yet

the association of the Hippo nuclear effector Yki with a large

number of sites in the fly genome (Oh et al., 2014) implies links

to a wider array of targets and cellular processes. Here we show

that the EcR-coactivator protein Tai plays a dual role as a regu-

lator of Yki-induced genes during normal development and a

key mediator of the effect of hyperactive Yki on cells with dis-

rupted Hippo signaling (model, Figure 7J). Tai supports normal
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developmental growth by controlling expression of classic Yki

targets ex, thread, bantam, and e2f1, but its role on these genes

is largely subordinate to inputs from Yki. EcR is required by Tai

to induce ex and thread and the EcR-bound repressor Smrter is

also required to repress ex, thread, and ban, suggesting that Tai

and other EcR components provide parallel, but subordinate,

inputs to Yki on these developmentally regulated genes. Tai

can interact with Yki via PPxY motifs present in the Tai TAD,

and this interaction links hyperactive Yki to a previously unde-

fined segment of the Yki-induced transcriptome that includes

the GSC factors nanos and piwi. The ability of the TaiPPxA1,2 pro-

tein to mildly retard the growth of otherwise WT tissues (e.g.,

Figure S2B versus Figure S2F) suggests that a Tai-Yki complex

plays a small role in normal developmental growth, perhaps

during developmental stages other than those examined here.

Critically, under conditions of Yki hyperactivity, the Yki-Tai

interaction becomes central to induction of an additional set

of transcriptional targets in L3 discs, including nanos and piwi,

which support tissue overgrowth. These findings reveal that

Tai plays a key role in determining the transcriptional output

of hyperactive Yki and significantly expand knowledge of

Yki-induced genes by highlighting a division within the Yki-

induced transcriptome into Tai-dependent and -independent

target genes.
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Figure 7. Nanos and Piwi Are Induced by

Yki and Are Required for Disc Hyperplasia

(A) Western blot of Nanos protein (top) in L3 wing

discs of the indicated genotypes. Embryo extract

(far left) is enriched for Nanos. Anti-histone H3 (H3)

is included as a loading control (middle). A longer

exposure detects histone H3 in embryonic extract

(lower).

(B–E) piwi-lacZ expression (red) in control en>GFP

(B) or en>yki,GFP (C–E) late L3 wing discs. (D) and

(E) are magnified views of areas boxed in (C) or

cross-sectional view through the dotted line in (C).

(F) Expression of the piwi-lacZ reporter in control

(top) and en>wartsIR (bottom) L3 wing discs.

(G) Adult female heads expressing YkiS168A from

the GMR-Gal4 driver alone or in combination with

Nanos (nosIR) or Piwi (piwiIR-1 or piwiIR-2) knock-

down.

(H) Late L3 wing discs of the indicated genotypes

stained with phalloidin-AlexaFluor-594 to visualize

F-actin.

(I) Scatterplot analysis of posterior compartment

ratio (P area:total area) among control (en>GFP),

Yki-expressing (en>yki), or in Yki combination with

nosIR or piwiIR-2 late L3 wing discs. Black bar is the

average ratio for each genotype (*0.01 < p < 0.05

relative to en>yki alone).

(J) A proposed model depicting dual roles of Tai

in Yki-driven growth programs. Tai supports

expression of classic Yki targets during normal

disc development, but is subordinate to Yki (left).

In cells with elevated Yki activity, the Tai:Yki

interaction is required to induce a distinct tran-

scriptional program including the GSC factors

Nanos and Piwi (right).
Induction of the normally germline-specific nanos and piwi

RNAs in imaginal disc cells by hyperactive Yki implies that inac-

tivation of the Hippo pathway engages a transcriptional program

that diverges from normal development. In addition to nanos and

piwi, a significant fraction of the candidate Yki-induced/Tai-

dependent genes (Table S3) display germline-enriched patterns

of expression (Chintapalli et al., 2007). The dILP-8 mRNA falls

into this category as well; it is normally expressed mainly in the

adult ovary, but is ectopically induced by Yki in a Tai-dependent

manner in wing discs (this study) and by mutations that produce

neoplastic wing disc tumors (Colombani et al., 2012; Garelli

et al., 2012), suggestive of common mechanisms linking expres-

sion of germline genes to abnormal disc growth. However, unlike

the secreted factor dILP-8, Nanos and Piwi proteins act autono-

mously in cells that express them. Nanos complexes with other
Developmental Cell 34, 168–
RNA binding proteins such as Pumilio

to block translation of germline mRNAs

encoding differentiation factors (Asaoka-

Taguchi et al., 1999; Forbes and Leh-

mann, 1998) and supports survival of

germ cells by repressing translation of

the pro-apoptotic factor Hid (Sato et al.,

2007). Intriguingly, the miR bantam is

required to maintain female GSCs (Yang

et al., 2009) and directly represses the

hid mRNA (Brennecke et al., 2003), sug-
gesting that Nanos and bantam may co-regulate the hid mRNA

downstream of hyperactive Yki. Piwi interacts with piRNAs in

the germ cell cytoplasm to repress target mRNAs but also has

a critical nuclear role in formation of repressive chromatin on

specific genomic loci (Klenov et al., 2014; Le Thomas et al.,

2013). Both Nanos and Piwi play key roles in blocking differenti-

ation and supporting self-renewing divisions in the germline (Cox

et al., 1998, 2000; Forbes and Lehmann, 1998; Kobayashi et al.,

1996; Lin and Spradling, 1997), suggesting that disc cells with

hyperactive Yki autonomously adopt elements of a germline

transcriptional program. As depletion of either factor in disc cells

blunts Yki-driven growth but has no effect on control tissues,

Nanos and Piwi behave as required elements of a larger tran-

scriptional program that is engaged by hyperactive Yki in disc

cells. The physiologic correlate to this GSC-like growth program
180, July 27, 2015 ª2015 Elsevier Inc. 177



is unclear, although a similar program is engaged in larval brain

cells lacking the insulator accessory protein l(3)Mbt (Janic

et al., 2010) and may be associated with Yki-mediated regener-

ation of damaged epithelia (Grusche et al., 2011; Sun and Irvine,

2011). Piwi-related proteins are expressed in somatic stems

cells of the planarian flatworm S. mediterranea and are required

for these cells to drive regenerative growth (Reddien et al., 2005),

further supporting a link between Yki and Piwi in regenerative

tissue growth. The ectopic expression of piwi and nanos homo-

logs in human cancer cells and their roles in supporting cancer

cell proliferation (reviewed in Bonnomet et al., 2008; Ross

et al., 2014; Strumane et al., 2006) imply that GSC factors can

also support aberrant tissue growth in vertebrates, perhaps by

promoting self-renewing divisions of cancer stem cells as pro-

posed for the vertebrate Yki homolog Yap1 (reviewed in Mo

et al., 2014).

In addition to effects on disc growth, co-overexpression of Yki

and Tai appears to enhance levels of F-actin in L3 wing discs, as

detected by phalloidin staining (e.g., Figure 6A), suggesting that

Yki and Tai modulate expression of factors involved in actin cyto-

skeleton dynamics. Given that F-actin can modulate Yki activity

(Fernández et al., 2011; Sansores-Garcia et al., 2011), this

phenomenon could further augment the effect of Yki and Tai

on the Hippo transcriptome. Alternatively, effects of Yki and

Tai on the actin cytoskeleton could occur via a shared down-

stream target that stimulates F-actin polymerization during

motility or cell-shape changes associated with tissue remodel-

ing, as occurs during pupal morphogenesis.

The physical interaction between the Yki and Tai proteins, and

the genetic requirements for EcR and Smrter in control of Hippo

target genes, suggests that the Ec and Hippo pathways could

share additional nuclear components and/or transcriptional tar-

gets. Consistent with this hypothesis, hyperactive Yki can pro-

mote transcription by recruiting a histone methyltransferase

complex containing the NCOA-6 and Trithorax-related (Trr) pro-

teins (Oh et al., 2014), which are also part of an EcR-associated

transcriptional complex (Carbonell et al., 2013; Mohan et al.,

2011; Sedkov et al., 2003). In addition, the Eig71Ee mRNA re-

sponds to the 20E pulse at the L3-pupal transition (Graveley

et al., 2011) and, as shown here, behaves as a Yki-inducible/

Tai-dependent transcript in L3 larval wings, implying some de-

gree of reciprocal crosstalk between the pathways. It is also

notable that Tai and Yki are involved in common cell biological

processes, but have not as yet been shown to perform these roles

via interaction with each other. Yki acts in enteroblasts to support

regenerative division of intestinal stem cells (reviewed in Luc-

chetta and Ohlstein, 2012), while Tai supports stem cell develop-

ment in the female germline (König et al., 2011). Intriguingly, the

hormone estrogen and the Tai-ortholog NCOA3, which interacts

with the estrogen receptor, each support stem cell pools in verte-

brates (Chitilian et al., 2014; Nakada et al., 2014), indicative of a

potential conserved link between hormone signaling and stem

cell renewal. Tai and Yki also each act cell autonomously to sup-

port invasive behavior of somatic border cell clusters in the ovary

(Bai et al., 2000; Lucas et al., 2013). Thus, one goal of further

studies will be to probe more deeply into the developmental

and homeostatic contexts in which the Ec and Hippo pathways

converge on the Tai-Yki complex and to identify relevant and

shared transcriptional targets in each biological setting.
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EXPERIMENTAL PROCEDURES

Genetics

All crosses were maintained at 25�C unless otherwise noted. For RNA

analyses, 24-hr embryos and L1 larvae were shifted to 28�C, and discs were

collected from late L3 wandering-stage larvae. Alleles used in these

studies (Bloomington stock number indicated) are as follows: Df(2L)ED678

(#8906), tai05809 (#12172), tai15101 (#10453), nanosl7 (#3285), Df(3R)Exel6183

(#7662), UAS-tai (#6378), UAS-taiDB (#28273), UAS-tai-IR-1/2 (#28971,

#32885), FRT40A,tai61G1-FRT40A (#6379), exe1-FRT40A (#44249), tai61G1,

exe1-FRT40A, UAS-ykiS168A:V5 (#28818), UAS-EcR.A-F645A (#9452), UAS-

EcR-IR (pan-EcR, #29374), UAS-EcR.A-IR (#9452), UAS-EcR.B1-IR (#9329),

UAS-smrter-IR (27068), thjc58 (th-lacZ; #12093), piwi1 (#43637), UAS-nanos-

IR (#28300), UAS-piwi-IR-1/2 (#34866, #33724), ex697 (ex-lacZ, #44248),

e2f1rM729 (e2f1-lacZ, #34054), da-Gal4 (#55851), and MS1096-Gal4 (#8860)

obtained from the Bloomington Drosophila Stock Center. UAS-yki-IR

(v104523) and UAS-warts-IR (v106174) were obtained from the Vienna

Drosophila Resource Center (VDRC). Other alleles used were enGal4/CyO,

ey-FLP;ubi-GFP-FRT40A, Ubx-Flp;ubiGFP-FRT40A, UAS-yki-GFP, Serrate-

lacZ (R. Read), ban2.5-lacZ, (K. Irvine),UAS-sd-IR andDIAP4.3-GFP (J. Jiang),

ban-sensor GFP (G. Halder), GMR-Gal4,UAS-ykiS168A:GFP (K. Harvey),

UAS-yki (D.J. Pan), and hsFLP;Act>CD2>Gal4 (J. Treisman). The UAS-

taiPPxA1,2 transgene was generated by standard approaches; transgenic ser-

vices were provided by BestGene.

Immunofluorescence Microscopy

Immunostaining and confocal microscopy performed using standard proce-

dures. Primary antibodies include mouse anti-b-Gal 1:1000 (Promega); rabbit

anti-Tai (1:1000; D. Montell); mouse anti-Ci (1:50) and mouse anti-BrC-Z3

(1:100) (DSHB); rabbit anti-Nanos (1:1000; A. Nakamura), anti-histone H3

(1:10,000; Abcam); BrdU assays performed as described previously (Robinson

et al., 2010) with mouse anti-BrdU (1:100; Becton Dickinson). Secondary anti-

bodies are goat anti-mouse-Cy3 and goat anti-mouse-Cy5 (1:100; Jackson

Labs). Phalloidin-AlexaFluor-594 and 488 (1:100; Life Technologies) were

used to detect F-actin.

Immunoprecipitation and ChIP in Cultured Cells

Drosophila S2 cell culture, transfection, and immunoprecipitation analysis

were performed as described in Gilbert et al. (2011). tai expression constructs

were generated from a tai ORF plasmid (gift of D. Montell) into the streptavidin

binding peptide (SBP), CuSO4-inducible pMK33 vector (Kyriakakis et al.,

2008). tai-pMK33 variants generated via site-directed mutagenesis. WT and

WW mutant versions of HA-tagged Yki are described previously in Gilbert

et al. (2011). For ChIP, an S2 clone stably transformed by pMK33-SBP-tai

was induced with 0.5 mM CuSO4, cross-linked in 1% formaldehyde, and

quenched in 125 mM glycine. Lysates prepared in ice-cold nuclei lysis buffer

(5 mM PIPES [pH 8.0], 85 mM KCl, 0.5% NP-40) plus protease inhibitors

(Roche), followed by equal volume of SDS lysis buffer (1% SDS, 10 mM

EDTA, 50mMTris-HCl [pH 8.0]) plus protease inhibitors (Roche), and then son-

icated prior to centrifugation. Streptavidin-agarose beads (Thermo Scientific)

were mixed with lysates and then sequentially washed (0.1% SDS, 1% Triton

X-100, 2 mM EDTA, 20 mM Tris-HCl [pH 8.0], 150 mM NaCl, then 0.1% SDS,

1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl [pH 8.0], 500 mM NaCl, then

0.25 M LiCl, 1% NP 40, 1% sodium deoxycholate, 1 mM EDTA, 10 mM Tris-

HCl [pH 8.0]; 23 with TE) and eluted (50 mM Tris/HCl [pH 7.4], 250 mM

NaCl 0.5% NP-40, 0.1% sodium deoxycholate, 4 mM biotin), extracted, and

suspended in TE buffer.
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E.M., Hur, J.K., Aravin, A.A., and Tóth, K.F. (2013). Piwi induces piRNA-guided

transcriptional silencing and establishment of a repressive chromatin state.

Genes Dev. 27, 390–399.

Lin, H., and Spradling, A.C. (1997). A novel group of pumilio mutations affects

the asymmetric division of germline stem cells in the Drosophila ovary.

Development 124, 2463–2476.

Ling, C., Zheng, Y., Yin, F., Yu, J., Huang, J., Hong, Y., Wu, S., and Pan, D.

(2010). The apical transmembrane protein Crumbs functions as a tumor sup-

pressor that regulates Hippo signaling by binding to Expanded. Proc. Natl.

Acad. Sci. USA 107, 10532–10537.

Losick, V.P., Morris, L.X., Fox, D.T., and Spradling, A. (2011). Drosophila stem

cell niches: a decade of discovery suggests a unified view of stem cell regula-

tion. Dev. Cell 21, 159–171.

Lucas, E.P., Khanal, I., Gaspar, P., Fletcher, G.C., Polesello, C., Tapon, N., and

Thompson,B.J. (2013).TheHippopathwaypolarizes theactin cytoskeletondur-

ing collective migration of Drosophila border cells. J. Cell Biol. 201, 875–885.

Lucchetta, E.M., and Ohlstein, B. (2012). The Drosophila midgut: a model for

stem cell driven tissue regeneration. Wiley interdisciplinary reviews. Dev.

Biol. 1, 781–788.

Mitchell, N., Cranna, N., Richardson, H., and Quinn, L. (2008). The Ecdysone-

inducible zinc-finger transcription factor Crol regulates Wg transcription and

cell cycle progression in Drosophila. Development 135, 2707–2716.

Mo, J.S., Park, H.W., and Guan, K.L. (2014). The Hippo signaling pathway in

stem cell biology and cancer. EMBO Rep. 15, 642–656.

modEncode Consortium, Roy, S., Ernst, J., Kharchenko, P.V., Kheradpour, P.,

Negre, N., Eaton, M.L., Landolin, J.M., Bristow, C.A., Ma, L., et al. (2010).

Identification of functional elements and regulatory circuits by Drosophila

modENCODE. Science 330, 1787–1797.

Mohan, M., Herz, H.M., Smith, E.R., Zhang, Y., Jackson, J., Washburn, M.P.,

Florens, L., Eissenberg, J.C., and Shilatifard, A. (2011). The COMPASS family

of H3K4 methylases in Drosophila. Mol. Cell. Biol. 31, 4310–4318.

Nakada, D., Oguro, H., Levi, B.P., Ryan, N., Kitano, A., Saitoh, Y., Takeichi, M.,

Wendt, G.R., and Morrison, S.J. (2014). Oestrogen increases haematopoietic

stem-cell self-renewal in females and during pregnancy. Nature 505, 555–558.
180 Developmental Cell 34, 168–180, July 27, 2015 ª2015 Elsevier In
Nijhout, H.F., and Grunert, L.W. (2002). Bombyxin is a growth factor for wing

imaginal disks in Lepidoptera. Proc. Natl. Acad. Sci. USA 99, 15446–15450.

Nijhout, H.F., Riddiford, L.M.,Mirth, C., Shingleton, A.W., Suzuki, Y., andCallier,

V. (2014). The developmental control of size in insects. Dev. Biol. 3, 113–134.

Oh, H., and Irvine, K.D. (2011). Cooperative regulation of growth by Yorkie and

Mad through bantam. Dev. Cell 20, 109–122.

Oh, H., Reddy, B.V., and Irvine, K.D. (2009). Phosphorylation-independent

repression of Yorkie in Fat-Hippo signaling. Dev. Biol. 335, 188–197.

Oh, H., Slattery, M., Ma, L., White, K.P., Mann, R.S., and Irvine, K.D. (2014).

Yorkie promotes transcription by recruiting a histone methyltransferase com-

plex. Cell Rep. 8, 449–459.

Pignoni, F., and Zipursky, S.L. (1997). Induction of Drosophila eye develop-

ment by decapentaplegic. Development 124, 271–278.

Reddien, P.W., Oviedo, N.J., Jennings, J.R., Jenkin, J.C., and Sánchez

Alvarado, A. (2005). SMEDWI-2 is a PIWI-like protein that regulates planarian

stem cells. Science 310, 1327–1330.

Riddiford, L.M. (1993). Hormone receptors and the regulation of insect meta-

morphosis. Receptor 3, 203–209.

Robinson, B.S., Huang, J., Hong, Y., and Moberg, K.H. (2010). Crumbs regu-

lates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain pro-

tein Expanded. Curr. Biol. 20, 582–590.

Ross, R.J., Weiner, M.M., and Lin, H. (2014). PIWI proteins and PIWI-interact-

ing RNAs in the soma. Nature 505, 353–359.

Salah, Z., and Aqeilan, R.I. (2011). WW domain interactions regulate the Hippo

tumor suppressor pathway. Cell Death Dis. 2, e172.

Sansores-Garcia, L., Bossuyt, W., Wada, K., Yonemura, S., Tao, C., Sasaki,

H., and Halder, G. (2011). Modulating F-actin organization induces organ

growth by affecting the Hippo pathway. EMBO J. 30, 2325–2335.

Sato, K., Hayashi, Y., Ninomiya, Y., Shigenobu, S., Arita, K., Mukai, M., and

Kobayashi, S. (2007). Maternal Nanos represses hid/skl-dependent apoptosis

to maintain the germ line in Drosophila embryos. Proc. Natl. Acad. Sci. USA

104, 7455–7460.

Sedkov, Y., Cho, E., Petruk, S., Cherbas, L., Smith, S.T., Jones, R.S., Cherbas,

P., Canaani, E., Jaynes, J.B., andMazo, A. (2003). Methylation at lysine 4 of his-

toneH3 inecdysone-dependentdevelopmentofDrosophila.Nature426, 78–83.

Staley, B.K., and Irvine, K.D. (2012). Hippo signaling in Drosophila: recent ad-

vances and insights. Dev. Dyn. 241, 3–15.

Strumane, K., Bonnomet, A., Stove, C., Vandenbroucke, R., Nawrocki-Raby,

B., Bruyneel, E., Mareel, M., Birembaut, P., Berx, G., and van Roy, F. (2006).

E-cadherin regulates human Nanos1, which interacts with p120ctn and in-

duces tumor cell migration and invasion. Cancer Res. 66, 10007–10015.

Sun, G., and Irvine, K.D. (2011). Regulation of Hippo signaling by Jun kinase

signaling during compensatory cell proliferation and regeneration, and in

neoplastic tumors. Dev. Biol. 350, 139–151.

Thomas, H.E., Stunnenberg, H.G., and Stewart, A.F. (1993). Heterodimerization

of the Drosophila ecdysone receptor with retinoid X receptor and ultraspiracle.

Nature 362, 471–475.

Tsai, C.C., Kao, H.Y., Yao, T.P., McKeown, M., and Evans, R.M. (1999).

SMRTER, a Drosophila nuclear receptor coregulator, reveals that EcR-medi-

ated repression is critical for development. Mol. Cell 4, 175–186.

Turkel, N., Sahota, V.K., Bolden, J.E., Goulding, K.R., Doggett, K., Willoughby,

L.F., Blanco, E., Martin-Blanco, E., Corominas, M., Ellul, J., et al. (2013). The

BTB-zinc finger transcription factor abrupt acts as an epithelial oncogene in

Drosophila melanogaster through maintaining a progenitor-like cell state.

PLoS Genet. 9, e1003627.

Yan, J., Tsai, S.Y., and Tsai, M.J. (2006). SRC-3/AIB1: transcriptional coactiva-

tor in oncogenesis. Acta Pharmacol. Sin. 27, 387–394.

Yang, Y., Xu, S., Xia, L., Wang, J., Wen, S., Jin, P., and Chen, D. (2009). The

bantam microRNA is associated with Drosophila fragile X mental retardation

protein and regulates the fate of germline stem cells. PLoSGenet. 5, e1000444.

Yao, T.P., Segraves, W.A., Oro, A.E., McKeown, M., and Evans, R.M. (1992).

Drosophila ultraspiracle modulates ecdysone receptor function via hetero-

dimer formation. Cell 71, 63–72.
c.

http://refhub.elsevier.com/S1534-5807(15)00326-3/sref35
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref35
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref35
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref36
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref36
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref36
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref37
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref37
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref37
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref38
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref38
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref38
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref38
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref39
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref39
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref39
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref40
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref40
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref40
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref41
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref41
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref41
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref42
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref42
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref42
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref43
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref43
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref43
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref44
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref44
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref44
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref44
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref45
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref45
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref45
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref46
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref46
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref46
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref46
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref47
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref47
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref47
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref48
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref48
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref48
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref49
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref49
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref49
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref50
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref50
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref50
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref51
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref51
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref52
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref52
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref52
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref52
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref53
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref53
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref53
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref54
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref54
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref54
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref55
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref55
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref56
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref56
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref57
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref57
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref58
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref58
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref59
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref59
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref59
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref60
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref60
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref61
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref61
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref61
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref62
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref62
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref63
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref63
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref63
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref64
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref64
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref65
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref65
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref66
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref66
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref66
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref67
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref67
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref67
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref67
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref68
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref68
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref68
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref69
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref69
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref70
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref70
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref70
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref70
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref71
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref71
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref71
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref72
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref72
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref72
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref73
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref73
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref73
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref74
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref74
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref74
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref74
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref74
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref75
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref75
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref76
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref76
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref76
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref77
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref77
http://refhub.elsevier.com/S1534-5807(15)00326-3/sref77

	The Ecdysone Receptor Coactivator Taiman Links Yorkie to Transcriptional Control of Germline Stem Cell Factors in Somatic T ...
	Introduction
	Results
	Tai Supports Tissue Growth
	Tai Interacts with Yki
	A Form of Tai that Cannot Bind Yki Antagonizes Yki-Stimulated Growth
	Endogenous Tai Supports Yki-Driven Tissue Growth
	Tai Requires EcR to Activate ex and thread Transcription
	Tai Is Dispensable for Yki Induction of Classic Hippo-Regulated Genes
	nanos and piwi Are Induced by Hyperactive Yki and Tai in Wing Discs

	Discussion
	Experimental Procedures
	Genetics
	Immunofluorescence Microscopy
	Immunoprecipitation and ChIP in Cultured Cells

	Supplemental Information
	Acknowledgments
	References


